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1. INTRODUCTION 

The ove ra l l  purpose of t h i s  program i s  t o  ascer ta in  the nature 

of the  defects  respons.ible f o r  the degradation i n  output of s i l i c o n  

devices ( s o l a r  c e l l s )  i r r ad ia t ed  by space rad ia t ion .  When the nature 

of the defects  and t h e i r  annealing mechanisms are  known, it w i l l  be 

possible (1) t o  determine the  parameters t h a t  w i l l  lead t o  develop- 

ment of radiation-hardened devices, ( 2 )  t o  p red ic t  the e f f e c t s  of 

r ad ia t ion  and annealing on s o l a r  c e l l s ,  and (3 )  t o  make use of compu- 

t e r  programs t o  p red ic t  rad ia t ion  e f f e c t s  i n  s o l a r  c e l l s  on extended 

space f l i g h t s .  

The present e f f o r t  i s  concentrated on the study of the e f f e c t s  

of l i th ium on the production and annealing of damage i n  s i l i con .  

This work i s  being performed on lithium-diffused bulk s i l i c o n  using 

measurements such as minority-carrier l i f e t ime ,  electron-spin reso- 

nance (ESR), e l e c t r i c a l  conductivity, and inf ra red  absorption. The 

temperature range from 77.5 t o  400°K i s  under invest igat ion.  The 

damage i s  introduced by 30-MeV e lec t rons  and f i s s i o n  neutrons. 

0 

During the  f i rs t  quarter  of t h i s  contract  year, e f f o r t  has been 

concentrated on sample preparation, equipment modification, necessary 
p re i r r ad ia t ion  measurements, and a n a l y t i c a l  s tud ies  o f  s o l a r  c e l l s .  

2 .  TECHNICAL DISCUSSION 

2 .1  mSISTIVITY A1\JD MINORITY-CARRIER LIFETIME MEASUREMENTS 

During t h i s  reporting per iod,  an ingot of high-purity Czochralski- 

grown quartz-crucible ( Q C )  phosphorus-doped s i l i c o n  was purchased from 

Wacker Chemical Company. Preliminary measurements indicate  the  r e s i s -  

t i v i t y  of t h i s  ingot  i s  approximately 90 ohm-em and t h a t  i t s  minority- 

c a r r i e r  l i f e t ime  a t  room temperature i s  100 psec. The e f f e c t  of heat 
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treatment on the r e s i s t i v i t y  of t h i s  mater ia l  was  investigated be- 

cause Ful le r  and Logan'') report  observing a subs tan t ia l  increase 

i n  donor density i n  quartz-crucible s i l i con  heated. t o  450 C i n  an 

i n e r t  atmosphere. Since l i thium i s  diffused i n t o  bulk s i l i con  a t  

400' to 45OoC, such a heat-treatment e f f e c t  would complicate any 

estimate of l i thium density based on r e s i s t i v i t y  measurements a f t e r  

diffusion.  

0 

0 Preliminary measurements on the e f f ec t  of a 450 C heat t r e a t -  

ment on s l i c e s  of s i l i con  taken from t h i s  ingot indicate the donor 

densi ty  increase i s  l e s s  than 1013 (em -hr)-'. 

r a t e  i s  much l e s s  than the donor density increase due to the l i thium 

diffusion and the red is t r ibu t ion  cycle, and may prove t o  be negligible.  

3 Fortunately, t h i s  

The possible e f f e c t  of heat treatment on minority-carrier l i f e -  

time was a l so  investigated.  Adjacent s l i c e s  of s i l i con  were cut from 

the  ingot.  One was diffused by the  l i thium-oi l  paint-on technique, 

the other was subjected t o  an iden t i ca l  temperature - cycling. After 

heat treatment, the r e s i s t i v i t y  of the diffused sample was 0.35 &O.O5 

ohm-em compared t o  65 rt5 ohm-em f o r  the nondiffused s l i c e .  The m i -  

nor i ty-car r ie r  l i fe t ime a t  300°K of the nondiffused s l i c e  w a s  s t i l l  
100 psec, while the l i fe t ime of the diffused s l i c e  w a s  30 ysec; indi-  

cat ing temperature cycling during sample preparation has negligible 

e f f e c t  on the pre i r rad ia t ion  l i fe t ime.  

Conventional four-lead minority-carrier l i fe t ime samples have 

been f8bricated from lithium-diffused bulk QC s i l i con .  Control s a -  

ples  of nondiffused s i l i con ,  subjected t o  i den t i ca l  heat treatments, 

were a l s o  fabricated.  The pre i r rad ia t ion  temperature dependence of 

minority-carrier l i fe t ime i s  being measured f o r  both diffused and 

control  samples, t o  separate the recombination center due to l i t h i u m  

diffusion f r o m  the recombination centers  i n i t i a l l y  present. 

An e f f o r t  t o  develop a computer subroutine to reduce minority- 

c a r r i e r  l i fe t ime and conductivity experimental data w a s  i n i t i a t e d  

during the f i r s t  quarter ,  bu t  has not been completed. 



The study of the degradation and anneal of minority-carrier 

l i fe t ime of e lectron-irradiated lithium-diffused float-zone s i l i con  

was continued during t h i s  quarter.  Two 30-MeV electron i r rad ia t ions  

were performed at  Linac. This data w i l l  be presented as soon as it 

i s  completely reduced. 

2.2 ELECTRON-SPIN RFSONANCE MEASUREMENTS 

The electron-spin resonance of the  phosphorus-vacancy ( Si-G8) 

center has continued. Our previous study indicated that l i thium 

diffusion reduced the i n i t i a l  number of paramagnetic phosphorus 

donors and tha t  the Si-G8 introduction r a t e  was  reduced i n  electron- 

i r rad ia ted  lithium-diffused phosphorus-doped s i l icon .  

These r e s u l t s  suggest t w o  questions. Since it i s  known that  

when l i t h i u m  i s  diffused i n t o  s i l i con  containing oxygen, a l i thium 

oxygen ( L i O )  complex i s  formed, does the reduction of the paramag- 

n e t i c  phosphorus density imply the formation of a lithium phosphorus 

(Lip) complex? 

phorus-vacancy (Si-G8) defects i s  reduced i n  lithium-diffused s i l i con ,  

where does the mobile radiation-induced vacancy go? That i s ,  does the 

f ree  l i thium compete w i t h  the  phosphorus f o r  the vacancies, and i f  a 

lithium-phosphorus complex is  formed, does it in t e rac t  w i t h  radiation- 

induced vacancies? 

Furthermore , since the introduction r a t e  of phos- 

I n  our previous invest igat ion,  samples had densi t ies  of approxi- 

mately 1.1 x l0l6 omm3 phosphorus and 3.6 x l0l6 ome3 lithium. 

p l e s  current ly  being investigated have approximately 1 x 10 cm 

l i thium and 1 x l0l6 ~m-~-phosphorus.  By varying the lithium-'to- 

phosphorus \ratio,  we hope to determine whether lithium-phosphorus 

complexes are  formed during l i thium diffusion. By measuring the 

irradiation-produced defect cen ter  introduction rates f o r  various 

impuri-ty concentrations, we hope t o  obtain information on the relative 

capture cross sect ions of the impurit ies.  

Sam- 
16 -3 
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This invest igat ion was resumed with a 77OK i r rad ia t ion  of care- 

f u l l y  oriented lithium-diffused phosphorus-doped s i l i con  samples t o  

30-MeV e lec t ron  fluences of about 6 x 10 

e/cm . 
diffused control  samples which have not been i r rad ia ted ,  are currently 

i n  progress. 

16 16 17 , 8 x 10 , and 1 x 10 
2 ESR measurements of these samples, and of diffused and non- 

I n  our previous search fo r  the  Si-G8 center,  an unidentified 

center with 1.982 < g s 1.997 was observed. 

of the introduction r a t e  of t h i s  center i s  a l s o  being investigated 

i n  an e f f o r t  to es t ab l i sh  i t s  ident i ty .  

The impurity dependence 

2.3 OPTICAL ABSORPTION MEASUREMENTS 

Both ESR and op t i ca l  absorption techniques were used i n  our prev- 

ious invest igat ion of the divacancy i n  electron-irradiated lithium- 

diffused float-zone s i l i con .  No divacancies were observed i n  samples 

i r r ad ia t ed  a t  77OK or 300°K with 30-MeV electrons.  From ESR measure- 

ments, it was concluded t h a t  e i the r  (1) the introduction r a t e  of d i -  

vacancies was g rea t ly  reduced by the  presence of l i thium or ( 2 )  the 

divacancy introduction cannot be determined because the divacancy was 

i n  a nonparamagnetic charge s t a t e .  Optical  absorption measurements, 

which do not  depend on the divacancy's charge s t a t e ,  were made on the  

most heavily i r r ad ia t ed  ESR samples, and no divacancies were detected. 

However, t h i s  sample had been warmed to room temperature during the 

ESR invest igat ion,  s o  t h a t  it was possible t h a t  annealing by l i thium 

motion had occurred. During t h i s  quarter ,  samples of diffused and 

nondiffused high-purity float-zone s i l i c o n  have been prepared specif-  

i c a l l y  fo r  op t i ca l  measurements. These samples were a l l  made from 

10 ohm-cm phosphorus-doped float-zone s i l icon .  They are a l l  approxi- 

mately 2mm x 5m x lOmm, with the 5mm x l h  faces polished to a mirror- 

l i k e  f i n i s h  with one micron diamond paste.  The lithium-diffused samples 

were diffused by the paint-on technique t o  an estimated l i thium density 

of 5 x 10l6 cme3 ( p  = 0.15 ohm-cm) before polishing. 

4 

These samples were 

4 



2 i r r ad ia t ed  w i t h  the ESR samples t o  a fluence of about lo1' e/cm 

(30  MeV) at  77OK, and are being maintained a t  77OK u n t i l  they can 

be i r radiated.  t o  a t o t a l  fluence of about 3 x lo1' e/cm . 
study, we expect t o  determine the ac tua l  divacancy introduction a t  

77OK. 
nealing experiments are  a l so  possible.  

2 From th is  

Since these samples w i l l  not have been warmed above 77OK, an- 

3. USE OF COMPUTER FN CODE FOR m D I C T I N G  PERFOFWW!E OF SOLAR CELLS 

Although the work under t h i s  contract  i s  being done on bulk s i l i -  

con d i f f i s e d  with lithium, the desired ult imate goal is  an operating 

deviceilamely, a so la r  cell-that i s  r e s i s t a n t  t o  radiat ion damage. 

Therefore, i n  addi t ion t o  measuring changes i n  the e lec t ronic  proper- 

t i e s  of bulk mater ia ls  due t o  damaging rad ia t ion  and annealing, it i s  

important t o  be able t o  pred ic t  the  e f f e c t  of such changes on the de- 

vice performance. The conventional analyses of so la r  c e l l  performance 

have usually taken two approaches. I n  the  f irst ,  the  shor t -c i rcu i t  

current of the  so l a r  c e l l  i s  calculated based on diffusion theory, 

assuming uniform c a r r i e r  l i fe t imes  ( o r  d i f fus ion  lengths) on the two 

s ides  of an estimated depletion region. The second approach consis ts  

of f i t t i n g  experimental data  t o  the  so la r  c e l l  equation t o  empiri- 

ca l ly  determine the  four unknown parameters i n  the equation. 

While both of these methods can yield use fu l  r e su l t s  f o r  many 

purposes, they both have shortcomings fo r  appl icat ion t o  rad ia t ion  

damage studies. Although the  f i r s t  method attempts t o  r e l a t e  per- 

formance t o  the bulk mater ia l  propert ies  of the  device ( f o r  example, 

l i fe t imes ,  d i f f i s i o n  constants,  generation rate of excess electron- 

hole p a i r s ,  e t c . ) ,  it i s  usua lu  necessary t o  assume tha t  the param- 

e t e r s  a re  constant on e i t h e r  s ide of the junction. Thus, it i s  d i f -  

f i c u l t  or impossible t o  cor rec t ly  simulate the  e f f ec t s  of non-uniform 

damage and the at tenuat ion of the l i g h t  i n t ens i ty  w i t h  depth i n t o  the 

device. Also, it i s  usually necessary t o  make  other simplifying as- 

sumptions, f o r  example, quasi-charge n e u t r a l i t y  i n  the bulk of the 

5 
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device, zero-carrier dens i t ies  a t  the edge of the  depletion region, 

and. no recombination i n  the depletion region. Moreover, t h i s  method 

i s  s t r i c t l y  applicable only to shor t -c i rcu i t  conditions, and attempts 

t o  pred ic t  performance as a function of load would require ad.d.itiona1 

assumptions. On the other hand, the  so l a r  c e l l  equation predic t s  the 

device performance versus load, but it i s  d i f f i c u l t  to r e l a t e  the 

empirically-determined parameters of the equation to the propert ies  

of the mater ia l ,  espec ia l ly  i f  the radiat ion damage i s  not uniformly 

d is t r ibu ted  throughout the device. Thus, one needs a new method, one 

which predic t s  the output of a so lar  c e l l  as a function of i t s  ex- 

t e r i o r  load, the basic  mater ia l  propert ies ,  and the d is t r ibu t ion  of 

damage. 

Under government contracts,  Gulf General Atomic Incorporated 

(GGA) has developed a computer code called FN(2) which i s  idea l ly  

su i t ed  fo r  t h i s  problem. This code i s  current ly  operational and has 

already been used to invest igate  a number of problems involving t ran-  

s i e n t  ionizat ion e f f e c t s  i n  e lec t ronic  devices. With no modifications, 

it can be used to predic t  the steady-state I - V  charac te r i s t ics  of so la r  

c e l l s  with a rb i t r a ry  doping p r o f i l e s ,  spec t r a l  i n t ens i ty  of l i g h t ,  non- 

uniform radiat ion damage, e t c .  It can include a l s o  the degradation of 

c a r r i e r  l i fe t imes  with radiat ion fluence and the  annealing of t h i s  

damage with time. However, f o r  most so l a r  c e l l  applications,  the 

damage i s  introduced s o  slowly compared to the  annealing r a t e  t h a t  

steady-state damage constants can be used. An e a r l i e r  version of the 

code i s  described i n  d e t a i l  i n  Ref. 2 but  some addi t ional  features  

t h a t  are  usef'ul for simulation of so la r  c e l l s  have been added during 

the pas t  year. The general  features  of the code t h a t  are  of i n t e r e s t  

for so la r  c e l l  problems are described b r i e f l y  i n  Section 3.1. The 

planned program f o r  demonstrating the usefulness of t h i s  code i n  pre- 

d ic t ing  so la r  c e l l  performance i s  out l ined i n  Section 3.2. 
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3.1 DESCRIPTION OF PN CODE 

The PN code i s  applicable t o  devices t h a t  can be approximated i n  

one dimension, e i t h e r  l i nea r  i n  rectangular geometries or  rad.ia1 i n  

cy l indr ica l ly  symmetric or spher ica l ly  symmetric geometries. 

following, the  discussion w i l l  be confined t o  the  l i nea r  geometry. 

In  the 

The basic  equations t h a t  are solved by the  computer fo r  the in- 

t e r i o r  of the device are  the one-dimensional continuity equations fo r  

the  two charge c a r r i e r s ,  n a n d p ,  

a Jn g - R - -  an - =  a t  ax 

and Poisson's equation for the  e l e c t r i c  f i e l d  E ,  

I n  these equations, n i s  the densi ty  of e lectrons i n  the conduction 

band, p i s  the densi ty  of holes i n  the  valence band, AN i s  the ne t  

densi ty  of doping of the semiconductor (pos i t ive  fo r  donors, negative 

f o r  acceptors) ,  q i s  the  magnitude of the e lec t ronic  charge, and K i s  

the d i e l e c t r i c  constant. The term g i s  the generation r a t e  of electron- 

hole p a i r s  due t o  the  incident rad ia t ion ,  and R i s  the r a t e  of recombi- 

nation of excess e lectrons and holes.  Usually, the  recombination r a t e  

i s  simulated by a Sh~ckley-Read '~)  type equation of the form 

2 np - n 
0 R =  

0 
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where n 

n and p when the Fermi l e v e l  coincides w i t h  the energy l e v e l  of the re- 

combination center,  and T~~ and T~ 

nation l i fe t ime of e lectrons i n  heavily p-type mater ia l  and of holes i n  

heavily n-type mater ia l ,  respectively.  However, i f  desired, more com- 

p l i ca t ed  types of recombination, including trapping, are available.  

and T~ change w i t h  fluence For rad ia t ion  damage and annealing, 

and time. The quant i t ies  J and J are the p a r t i c l e  current dens i t ies  
n P 

given by 

i s  the  i n t r i n s i c  c a r r i e r  density,  % and. p 
0 F are the  values of 

are the low-injection-level recombi- 
0 

TnO 0 

an = nvn - Dn ax , an Jn = - npn E - Dn 

J = p p p ~ - ~  = nv - D  
P P a x  P P a x  

The E (or veloc i ty  v )  terms are  the d r i f t  currents w i t h  mobil i t ies  p n 
and p , and, the a/@ terms are  the  diffusion currents with diff'usion 

coeff ic ients  Dn and D . Temperature en ters  the problem by Eins te in ' s  

r e l a t i o n  between the  p's and the D ' s  and i n  the values of no, pn, IJ- , 
Trio, Tpo, %> and PF* 
can be f'unctions of time and pos i t ion  while LQT, pn, and p 

s t a n t  i n  time but are functions of posi t ion.  

P 

P 

P 
I n  these equations, n, P:, Q:, Tn , Tp0, and E 

a re  con- 
0 

P 

The device i s  connected to an ex te r io r  c i r c u i t  t h a t  can include 

various arrangements of b a t t e r i e s ,  res is tances ,  capacitances, and in- 

ductances. However, f o r  so la r  c e l l  applications the ex ter ior  c i r c u i t  

w i l l  normally consis t  of a s ingle  ex ter ior  res is tance connecting the 

two ends of the  device. The code calculates  the current i n  the  ex- 

t e r i o r  c i r c u i t  by summing voltages around the loop, including i n t e r n a l  

e l e c t r i c  f i e l d s  inside the device and contact po ten t ia l s  a t  the  two 

contacts,  and dividing by the  ex te r io r  res is tance.  The boundary con- 

d i t i ons  require tha t  the ex te r io r  current equals the in t e rna l  current 

inside each end of the device. 

c 
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Several ty-pes of boundary conditions at  the  contacts are avai l -  

able. One, cal led "bulk" conditions, forces the  slope of the  c a r r i e r  

dens i t ies  to be zero a t  the boundaries. This condition i s  su i tab le  

i f  the d e t a i l s  of the boundaries a re  not important and c a r r i e r  den- 

s i t i e s  can be assumed to have t h e i r  bulk values, that  is, t he i r  val-  

ues, far from any discont inui ty  i n  the device. However, i f  d i f f e r -  

ences i n  the work f'unctions of the semiconductor and contacrs are i m -  

por tan t ,  the "bulk" contact po ten t i a l s  , which are automatically in- 

cluded in . the  code as a function of doping to give the proper sum- 

mation of voltages around the c i r c u i t ,  can be modified to account f o r  

the difference i n  work functions. Final ly ,  i f  ohmic contacts are de- 

sired,  a t h i n  region of high recombination r a t e  can be simulated a t  

each contact.  

To solve the  time-dependent p a r t i a l  d i f f e r e n t i a l  equations , they 

are converted i n t o  f i n i t e  difference forms, and the resu l t ing  algebraic 

equations are  solved by i t e r a t i o n  f o r  f ini te- t ime s tep  in te rva ls .  The 

d e t a i l s  of the differencing and i t e r a t i o n  procedures are described 

filly i n  Ref. 2 and w i l l  not be repeated here. Suffice to say, the 

t r ans i en t  and steady-state solut ions obtained from the code give ex- 

ce l l en t  checks w i t h  problems tha t  can be solved analyt ical ly .  The 

mesh d i s t r ibu t ion  f o r  the f i n i t e  differences i s  a rb i t ra ry ,  but the 

permissible t o t a l  i s  l imited to 300 s t a t ions  by the capacity of the 

Univac 1108 computer. This number i s  quite adequate fo r  simulating 

a so la r  c e l l .  

are changing rapidly w i t h  pos i t ion ,  such as near junctions, and they 

can be spaced f'urther apar t  where the var iables  are changing more 

slowly. The code has an automatic remesh feature  i n  case the den- 

s i t i e s  change more rapidly than a specif ied r a t i o  between adjacent 

mesh s t a t ions .  

The mesh spacing can be made s m a l l  where the var iables  

To start a new problem, the code starts from an a r b i t r a r y  but 

mathematically consis tant  s e t  of d . is t r ibut ions of dens i t ies  and e lec  - 
t r i c  f ie lds .  This i n i t i a l  d i s t r ibu t ion  is  usual ly  physical ly  un- 

r e a l i s t i c ,  but the code then proceeds i n  time to the correct  physical  

9 
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s i tua t ion  depending on the input parameters. If one then desires  t o  

make a s m a l l  change t o  the system, such as changing the ex ter ior  re- 

s i s tance ,  it i s  usua l ly  permissible t o  s t a r t  from the end of the  prev- 

ious run and make the change, ra ther  than s t a r t i n g  over from the arbi-  

t r a r y  i n i t i a l  dLstribution. 

The advantages of t h i s  code over most other methods of analysis 

are  (1) it i s  not necessary to make a rb i t r a ry  assumptions about the 

boundary conditions a t  the edge of the depletion region or about 

quasi-charge neu t r a l i t y  i n  various regions of t he  sample, ( 2 )  recombi- 

nation inside the depletion region can be considered, and ( 3 )  the 

doping p r o f i l e  and the  d is t r ibu t ions  of recombination centers and 
c a r r i e r  generation r a t e  inside the  sample can be simulated to any 

reasonable degree of complexity. Thus, the user  has the  assurance 

t h a t  what he obtains from the computer i s  not a byproduct of some 
dubious assumption t h a t  he may have had to make i n  order to obtain 

a solut ion but  i s  the  rigorously correct  solut ion f o r  the equations 

of the system, within the accuracy of the  f i n i t e  difference approxi- 

mations. 

3.2 PROPOSED PROGRAM FOR PREDICTING SOLAR CELL PERFORMAWE 

The purpose of t h i s  program i s  to demonstrate t h a t  the PN code 

can generate r e a l i s t i c  performance curves f o r  so l a r  c e l l s  and can 

reasonably predic t  t he  e f f e c t  of various parametric changes which are  

hard to analyze by other methods. 

be directed toward any spec i f ic  device, but  whatever experimental 

da ta  t h a t  are avai lable  and per t inent  w i l l  be used for  comparison. 

Consequently, t h i s  work w i l l  not 

A t  the  start ,  the  code w i l l  be applied to typ ica l ,  undamaged 

so la r  c e l l s ,  and the predicted I -V  curves w i l l  be compared to ex- 

perimental data,  such as i n  Ref. 4. 
dent l i g h t  (d i f f e ren t  a t tenuat ion of electron-hole generation r a t e  

with depth) can be s tudied as wel l  as the e f f e c t  of l i g h t  i n t ens i ty  

and changes i n  the device parameters, such as doping p ro f i l e s ,  c a r r i e r  

The e f f e c t  of the type of inci- 
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l i fe t imes ,  e t c .  Once a reasonable representation of the undamaged 

so lar  c e l l  has been obtained, non-uniform damage due t o  low-energy 

protons w i l l  be simulated. 

w i l l  be estimated from Ref. 5 and the  changes i n  the predicted I -V  

curves w i l l  be compaxed t o  the available experimental r e su l t s ,  such 

The d.epth and d i s t r ibu t ion  of the damage 

as Lodi. (4) 

Some i n i t i a l  r e su l t s  from the computer are  p lo t t ed  i n  Fig. l a ,  
along w i t h  two typ ica l  experimental curves (Fig. l b )  from Refs. 4 
and 6. 
ized to the  shor t -c i rcu i t  currents and open-circuit voltages. The 

two theo re t i ca l  curves are based on an assumed, r e a l i s t i c  doping 

p r o f i l e  and l i fe t ime charac te r i s t ics .  One curve (labeled Run 104) 
i s  f o r  a uniform generation r a t e  throughout the sample of 10 

~ m - ~ / s e c  corresponding to sunl ight  at  the surface of the c e l l  w i t h  

an a r b i t r a r y  r e f l ec t ion  and coverslip loss of 0.08. 

same generation r a t e  at  the i l luminated surface,  but  it i s  attenuated 

w i t h  depth. The at tenuat ion is  calculated from the  absorption coef- 

f i c i e n t  f o r  s i l i c o n  quoted by Kleinman. (7) The two experimental 

curves are  for devices whose basic  parameters are not def in i te ly  

known, so they should not be compared i n  d e t a i l  w i t h  the  theo re t i ca l  

curves. They are  presented only to i l l u s t r a t e  the general s imi l a r i t y  

of r e s u l t s .  However, the  nominal cha rac t e r i s t i c s  of the T I  c e l l  were 

estimated (Table 1) , and these were used i n  the calculations.  In  the 

f’uture, an attempt w i l l  be made to obtain b e t t e r  estimates of the 

parameters fo r  the  experimental c e l l s  s o  tha t  comparison of theo- 

r e t i c a l  and experimental r e s u l t s  w i l l  be more meaningful. Table 2 

lists t he  open-circuit voltages and shor t -c i rcu i t  currents f o r  the 

curves i n  Flg. lb.  The values fo r  run 300 are about one-half of the 

T I  c e l l  measured r e s u l t s .  This may indicate  tha t  the doping l e v e l  

and l i fe t ime i n  the N region should have been about twice the values 

given i n  Table 1. 

For convenience of comparison, a l l  curves have been normal- 

21 

The other has t h i s  

I 
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Table 1 

PARAMETERS USED I N  MODEL OF N ON P SOLAR CELL 

2 Lifetime (msec) Mobili t ies (cm /nsec) Doping 

(cm'3) e l e  c t rons  hole s e l e  c t r  ons holes 

N Region 3.0 1 0 ~ 7  0.01 
P Region 1 . 5  x 1015 5.0 

1.0 

0.1 

670.0 
l230.0 

220.0 

430.0 

2 4 Cross sect ion area: 1 cm , depth of junction: 10- cm, t o t a l  length: 
3.8 x 10-2 cm. 

Table 2 

VALUES OF CUXXENT AND VOLTAGES FOR THE VARIOUS CURVTS 

T I  LODI R U ~  300 Run 104 

Open-circuit 

Short-circui t  

voltage 0.55 0.52 0.241 0.302 

cur r en t  * 
(amps) 2.9 x lov2 3.4 x 4.42' 

* 2 Normalized t o  an area of 1 cm . 
"his run, i n  which the l i g h t  i n t ens i ty  was  uniform, had a 
generation r a t e  i n  the bulk region some 2 or 3 orders of 
magnitude l a rge r  than the  generation r a t e  fo r  Run 104. 

.-I- 



4. PUNS FOR THE NEXT REPORTING PERIOD 

I n  the next reporting period, we expect t o  complete the irradi- 

a t ion  of samples t o  be used i n  the op t i ca l  absorption measurements. 

These samples and ESR samples w i l l  be irradiated simultaneously a t  

l iqu id  nitrogen temperatures w i t h  30-MeV electrons and maintalned a t  
77"K, i n  an e f f o r t  t o  prevent defect  annealing as a r e s u l t  of ' l i th ium 

diffusion,  u n t i l  examined. 

ESR, o p t i c a l  absorption, and minority-carrier l i fe t ime studies 

o f  e lectron-irradiated lithium-diffused s i l i con  w i l l  be continued 

during the next reporting period. 

The computer determination of solar c e l l  output w i l l  continue. 

5. NEW TECHNOLOGY 

No new technology i s  cur ren t ly  being developed or employed i n  

t h i s  P Y O g ~ o  

1 
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